

Tangent-Radius Property: a tangent is perpendicular to the radius at the point of connection. (Tongency)

So, $\angle \underline{\mathrm{APO}=90^{\circ}=\underline{\angle \mathrm{BPO}}, \underline{2}}$

Ex. 1 Point 0 is the centre of the circle and $A B$ is a tangent to the circle. In $\triangle O A B, \angle A O B=63^{\circ}$. Determine the measure of $\angle 0 B A$.

Answer: $\quad \angle \mathrm{A}=90^{\circ}$, so all angles must add up to 180°. $180-63-90=27^{\circ}$
Therefore $\angle \mathrm{OBA}=27^{\circ}$

Ex. 2 Point 0 is the centre of the circle and $C D$ is a tangent to the circle. $C D=15 \mathrm{~cm}$ and $\mathrm{OD}=20 \mathrm{~cm}$. Determine the length of the radius $O C$. Give the answer to the nearest tenth.

Answer: $\angle \mathrm{C}=90^{\circ}$, use Pythagorean's Theorem

$$
\begin{aligned}
& \mathrm{x}^{2}+15^{2}=20^{2} \\
& \mathrm{x}^{2}=400-225 \\
& \mathrm{x}^{2}=175 \\
& \mathrm{x}=13.2 \mathrm{~cm}
\end{aligned}
$$

Ex. 3 An airplane, A, is cruising at an altitude of 9000 m . A cross section of the Earth is a circle with radium approximately 6400 km . A passenger wonders how far she is from a point H on the horizon she sees outside the window.
Calculate the distance to the nearest kilometer.

Answer: The tangent AH is perpendicular to the radius HE , therefore $\angle \mathrm{AHE}=90^{\circ}$. Use Pythagorean's Theorem to solve.

Convert 9000 m to $\mathbf{k m}: 9000 / 1000=9 \mathbf{k m}$
$x^{2}+6400^{2}=6409^{2}$
$x^{2}=41075281-40960000$
$x^{2}=115281$
$x=340 \mathrm{~km} \quad$ They are about 340 km from the horizon.

