Grade 9 Math
Unit 7 - Circle Geometry

Arcs

A section of the circumference of a circle is an arc.
The shorter arc AB is the minor arc.
The longer arc $A B$ is the major arc.

Angles

The angle formed by joining the endpoints of an arc to the centre of the circle is called a central angle.

The angle formed by joining the endpoints of an arc to a point on the circle is called an inscribed angle.

The inscribed and central angles in this circle are subtended by the arc $\mathbf{A B}$.

Central and Inscribed Angle Property:

The central angle is twice the size of the inscribed angle when both angles are subtended by the same arc.

$$
\begin{aligned}
& \angle \mathrm{POQ}=\underline{2} \angle \mathrm{PRQ} \\
& \angle \mathrm{PRQ}=1 / 2 \angle \mathrm{POQ}
\end{aligned}
$$

Inscribed Angles Property:

All inscribed angles subtended by the same arc are congruent (equal).

Ex. 3 Triangle $A B C$ is inscribed in a circle, centre O.
$\angle \mathrm{AOB}=100^{\circ}$ and $\angle \mathrm{COB}=140^{\circ}$
Determine the values of x°, y° and z°.

Answer: \quad To solve $\angle \mathrm{x}$:
All angles in a circle add up to 360°, so $\mathbf{3 6 0}-\mathbf{1 0 0}-140=120^{\circ}$

To solve $\angle \mathrm{y}$:
Since $\angle \mathrm{ABC}$ is an inscribed angle and $\angle \mathrm{AOC}$ is a central angle subtended by the same are, $\angle \mathrm{ABC}=1 / 2 \angle \mathrm{AOC}$

Therefore, $\angle \mathrm{ABC}=1 / 2(160)=60^{\circ}$
To solve $\angle \mathrm{z}$:
Since $O B, A O$ and $O C$ are radii, all of the triangles are isosceles.
Therefore $\angle z=\angle$ OAC. Since all angles of a triangle add up to 180°,

$$
\begin{aligned}
& 120+z+z=180 \\
& 2 z=180-120 \\
& 2 z=60 \\
& z=30^{\circ}
\end{aligned}
$$

Ex. 4 Point O is the centre of the circle. Determine the value of x° and y°. Which circle properties did you use?

Answer: \quad Since $A O, O C$, and $O B$ are all radii, they are isosceles triangles.
Therefore, $\angle \mathrm{OAC}=\angle \mathrm{ACO}=30^{\circ}$
So $\angle \mathrm{AOC}=180-\mathbf{3 0}-\mathbf{3 0}=120^{\circ}$.
And $\angle \mathrm{x}=180-120=60^{\circ}$

$$
\angle \mathrm{ACB}=90^{\circ}, \text { so } \angle \mathrm{ABC}=180-30-90=60^{\circ}
$$

Assignment

This is the end of Unit 7 - Circle Geometry. The unit test will be on

