


# Parts of an Algebraic Expression

# ► GOAL

Identify the parts of an algebraic expression.

# Learn about the Math

An expression containing variables, numbers, and operation symbols is called an **algebraic expression.** 5x + 3y + 8 is an example of an algebraic expression.

Each expression is made up of **terms.** A term can be a signed number, a variable, or a constant multiplied by a variable or variables. Each term in an algebraic expression is separated by a + sign or - sign. In 5x + 3y + 8, the terms are: 5x, 3y, and 8.

When a term is made up of a constant multiplied by a variable or variables, that constant is called a **coefficient**. In the term 5x, the coefficient is 5.

In some terms, the variables will have exponents, such as  $8x^2$ . This exponent determines the **degree** of that term.

- The degree of  $8x^2$  is 2. The degree of  $9x^3$  is 3.
- If the variable does not have an exponent, the degree is 1. For instance, the degree of 8*x* is 1.
- If a term has more than one variable, the degree is equal to the sum of the exponents of all its variables. The degree of  $8x^3y^2z$  is 6.
- If a term does not contain any variable, the degree is 0. For instance, the degree of 9 is 0.

Terms in which the same variable is raised to the same exponent are called **like terms.**  $2x^2$  and  $10x^2$  are like terms.

Kurt sees the temperature, 20 °C, on a thermometer on the way to school. He asks his teacher what this temperature would be in degrees Fahrenheit. His teacher gives him the expression, 1.8x + 32, where *x* represents the temperature in degrees Celsuis, and tells him it can be used to change from degrees Celsius to degrees Fahrenheit.

# algebraic expression

an expression containing variables, numbers, and operation symbols

### term

a signed number, a variable, or a constant multiplied by a variable or variables

## coefficient

a constant multiplied by a variable or variables

### degree

the sum of a term's exponents

### like terms

terms in which the same variable is raised to the same exponent

# **?** What are the names for each part of the algebraic expression 1.8x + 32?

Example 1: Labelling the parts of an algebraic expression

Find the terms, coefficient, and degree for this expression: 1.8x + 32.

#### **Kurt's Solution**

| Terms: 1.8 <i>x</i> and 32                       | I know a term is a signed number, a variable, or a constant multiplied by a variable or variables. This expression has 2 terms.                                                                |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coefficient: 1.8                                 | I also know that coefficients are the constants by which the variables are being multiplied. <i>x</i> is being multiplied by 1.8, making 1.8 the coefficient.                                  |
| Degree of 1.8 <i>x</i> is 1<br>Degree of 32 is 0 | To find the degree of each term, I use the fact that the degree of a term with a variable that does not have an exponent is 1, and the degree of a term that does not contain a variable is 0. |
| 1 + 0 = 1                                        | The degree of the expression is 1.                                                                                                                                                             |

# Reflecting

- 1. Give an example of two like terms and two unlike terms. Explain why they would or would not be classified as like terms.
- **2.** What is the degree of each term in this expression:  $19x^3 8x^2 + x$ ?
- 3. Must a term contain a variable? Explain.

### Work with the Math

Example 2: Labelling the parts of an algebraic expression

List the terms, coefficients, and degree of each term in the following expression:  $4x^3y^2 + 2x^2 - 3x + 4$ .

### Maggie's Solution

| Terms: 4 <i>x</i> <sup>3</sup> <i>y</i> <sup>2</sup> , 2 <i>x</i> <sup>2</sup> , – 3 <i>x</i> , and 4              | To find the terms, I need to list all of the signed numbers, variables, or constants being multiplied by a variable or variables.                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coefficients: 4, 2, and $-3$                                                                                       | I determine the constants multiplied by variables are 4, 2, and $-3$ , making each of these a coefficient.                                                                                                                                                                                                            |
| Degree of $4x^3y^2$ is $3 + 2$ or $5$<br>Degree of $2x^2$ is $2$<br>Degree of $-3x$ is $1$<br>Degree of $4$ is $0$ | To determine the degree of each term, I will<br>examine the exponents. The sum of the<br>exponents in the first term is 5; the exponent<br>in the second term is 2; the third term does not<br>have an exponent, therefore the degree is 1;<br>and the last term does not contain a variable,<br>making the degree 0. |

# A Checking

- **4.** a) Identify the like terms in this expression:  $4x^2 + 2x 6x + 3y$ .
  - b) Which term has the highest degree in the following expression:  $2x^3 - 4x^2 + 9y^2$ ?

# B Practising

- **5.** How many terms are in each of the following algebraic expressions?
  - a)  $6x^3 + 8x^2 4x$
  - **b)**  $15xy^3 + 21x^2 16$
  - c)  $19x^4 + 8x^2 + 4xy 2$
  - d)  $8x^3 + 14x^5 20x^2 + 9x 25$
  - e)  $9x^3y + 5x^4 24x^2 + 7x 6x^6$
  - f) 2ab + 7
  - g) 15xy + 7x + 2y + 9

- **6.** Identify the coefficients in each expression.
  - a)  $81x^3 + 7xy^2 14x$
  - **b)**  $4x^3 + 8x^2 24$

- **c)**  $61x^2 + 6x^2 + 2x 7$
- d)  $4xyz^3 + 8x^2 2xy^2 + 29x 46$
- **e)**  $22a^3 + 38a^2 12b$
- **f)** 28a<sup>2</sup> 17ab
- **g)** 7x + 2xy
- 7. Identify the degree for each term.
  - a)  $12x^3y^2$
  - **b)** 62*x*<sup>4</sup>
  - **c)**  $2x^2y$
  - **d)** 125*x*<sup>5</sup>
  - **e)** 9a<sup>7</sup>
  - **f)** -12
  - **g)** 12ab<sup>2</sup>c

- **8.** List the like terms in each of the following algebraic expressions.
  - a)  $14xy^2 + 25x 6x + 2$ b)  $8x^2 + 12x^2 - 9xy + 3x$ c)  $86x^3 + 42x - 36x^3 + 21y$ d)  $4x^2 + 6y - 6x + 7y$
  - e)  $36m^3 + 22m^2n^2 2m^2n^2 + 7m 50$
- **9.** Identify the terms, coefficients, and degree of each term in the following expressions.
  - a)  $14x^3 + 42x 36x + 21y$
  - **b)**  $26x^4 + 59x^3 12y + 6x 9$
  - c)  $2x^2y^2 + 3xy + 4$
  - d) 3xyz + 8xy + 2y + 6
  - **e)**  $4a^2b + 2a 17$

- Rewrite each expression so that the terms are in order of descending (greatest to least) degree.
  - a)  $4a^2 6a^3 + 9 3a$
  - **b)**  $5x^3y^2 4xy 6x^3y 8x + 7y^6$
  - c)  $16m^2 2m + 9$
  - d)  $10ab + 7a^2b^2c 7a + 2$
  - **e)**  $4x^8 + 10 + 7y^4$

# **G** Extending

- **11.** Write an expression with 5 terms, containing the coefficients 7, 21, 14, and 8.
- **12.** Write an expression with at least 4 terms. List the terms, coefficients, and degree of each term.