

Target A-3 Extra Practice 3

1. Fill in the blanks to find the missing distance.

$$d^{2} = 700^{2} + __^{2}$$

$$d^{2} = __+ __$$

$$d^{2} = __$$

$$d = \sqrt{__}$$

$$d = __$$

The hypotenuse is _____ m.

2. Fill in the blanks to determine if the triangle is a right triangle. Use the Pythagorean relationship, $c^2 = a^2 + b^2$.

Left Side $13^2 =$

The area of the large square is

_____ cm².

ſ.

 $5^2 + 12^2 = ___ + ___$

=

The sum of the areas of the two smaller squares is ____ cm².

Is the triangle a right triangle? YES How do you know?

NO

Copyright © McGraw-Hill Ryerson, 2008

- **3.** A rectangular field measures 20 m \times 40 m. Stefan walked along the diagonal from one corner to its far corner. Megan walked along the two sides of the field.
 - a) Draw a diagram to match this situation.

- **b)** What is the distance Stefan walked? Give your answer to the nearest tenth of a metre.
- c) What is the distance Megan walked?
- **d)** Which distance is shorter and by how much? Give your answer to the nearest tenth of a metre.
- **4.** Before Larissa's father builds the roof of a shed, he asks her to check if the walls meet at a right angle. She makes a mark at 150 cm from the corner on each wall. She measures the diagonal length as 220 cm. Do the walls meet at a right angle? Justify your response.

Extra Practice Answers

1. $d^2 = 700^2 + 2400^2$ $d^2 = 490\ 000\ +5\ 760\ 000$ $d^2 = 6\ 250\ 000$ $d = \sqrt{6\ 250\ 000}$ $d = 2500\ m$

2. Left Side $3^2 = 169$ **Right side** $5^2 + 12^2 = 225 + 144$ = 169

Yes. The triangle is a right triangle because the area of the large square is the same as the sum of the areas of the two smaller squares.

- **b)** 44.7 m
- **c)** 60 m
- d) The distance of 44.7 m is shorter by 15.3 m.
- **4.** No, the walls do not meet at a right angle. To the nearest centimetre, the diagonal should measure 212 cm.

Extra Practice 5 Answers

- 1. a) About 6.7 cm
- b) About 12.6 cmd) About 6.9 cm
- c) About 10.2 cme) About 7.5 cm
- f) About 13.2 cm

- 2. a) 13 m
- b) About 15.26 cm
- 3. I drew a right triangle so that the area of the square on the hypotenuse equalled the sum of the areas of the squares on the legs.

a)
$$2^2 + 4^2 = (\sqrt{20})^2$$

d) $1^2 + 5^2 = (\sqrt{26})^2$

(

Extra Practice 6 Answers

- 1. a) Does $8^2 + 24^2 = 25^2$? L.S. = $8^2 + 24^2 = 64 + 576 = 640$ R.S. = $25^2 = 625$ No, $640 \neq 625$ So, the triangle is not a right triangle.
 - b) Does $12^2 + 5^2 = 13^2$? L.S. = $12^2 + 5^2 = 144 + 25 = 169$ R.S. = $13^2 = 169$ Yes, 169 = 169So, the triangle is a right triangle
- 2. The right triangles are the triangles in b, c, and d. a) Does $3^2 + 4^2 = 6^2$? L.S. = $3^2 + 4^2 = 9 + 16 = 25$ R.S. = $6^2 = 36$ No, $25 \neq 36$ b) Dece $7^2 + 24^2 = 25^{2}9$
 - b) Does $7^2 + 24^2 = 25^{27}$ L.S. = $7^2 + 24^2 = 49 + 576 = 625$ R.S. = $25^2 = 625$ Yes, 625 = 625c) Does $6^2 + 8^2 = 10^{27}$ L.S. = $6^2 + 8^2 = 36 + 64 = 100$ R.S. = $10^2 = 100$ Yes, 100 = 100

d) Does
$$1^2 + 2^2 = (\sqrt{5})^2$$
?
L.S. = $1^2 + 2^2 = 1 + 4 = 5$
R.S. = $(\sqrt{5})^2 = 5$

Yes,
$$5 = 5$$

e) Does $2^2 + 3^2 = (\sqrt{12})^2$? L.S. $= 2^2 + 3^2 = 4 + 9 = 13$ R.S. $= (\sqrt{12})^2 = 12$ No, $13 \neq 12$

3. The Pythagorean triples are the sets in a, c, and d.

4.36

5. a) Yes, it is a right triangle. $5^2 + (\sqrt{96})^2 = 11^2$

b) They do not form a Pythagorean triple since $\sqrt{96}$ is not a whole number.

Extra Practice Answers

- 1. a) About 8.5 cm
 - b) About 5.7 cm
 - c) About 5.71 cm
- 2. About 11.7 m
- 3. About 7.2 m
- 4. Does $88^2 + 105^2 = 137^2$? L.S. = $88^2 + 105^2 = 7744 + 11\ 025 = 18\ 769$ R.S. = $137^2 = 18\ 769$ Yes, $18\ 769 = 18\ 769$
 - So, the frame is a rectangle since its corners form right angles.
- 5. About 9.4 km
- 6. About 9.8 m

Target A-3 Extra Practice 2

1. Fill in the blanks to find the length of the hypotenuse of the right triangle.

The length of the hypotenuse is _____ cm.

2. Fill in the blanks to find the unknown leg length of the right triangle.

3. What is the length of the hypotenuse of each right triangle? Show your work. Give your answer to the nearest tenth of a centimetre.

4. Use the Pythagorean relationship to determine the unknown leg length of each right triangle. Give your answer to the nearest metre. Show your work.

Extra Practice Answers

1

1.
$$t^2 = 6^2 + 8^2$$
, $t^2 = 36 + 64$, $t^2 = 100$,
 $t = \sqrt{100}$, $t = 10$, 10 cm
2. $e^2 + 12^2 = 13^2$, $e^2 + 144 = 169$,
 $e^2 + 144 - 144 = 169 - 144$, $e^2 = 25$, $e = \sqrt{25}$, $e = 5$, 5 cm
3. a) $d^2 = 12^2 + 20^2$, $d^2 = 144 + 400$,
 $d^2 = 544$, $d \approx 23.3$, 23.3 cm
b) $z^2 = 8^2 + 10^2$, $z^2 = 64 + 100$, $z^2 = 544$,
 $z \approx 12.8$, 12.8 cm
4. a) $11^2 + w^2 = 17^2$, $121 + w^2 = 289$,
 $121 - 121 + w^2 = 289 - 121$, $w^2 = 168$,
 $w \approx 13$, 13 m
b) $p^2 + 13^2 = 18^2$, $p^2 + 169 = 324$,
 $p^2 + 169 - 169 = 324 - 169$, $p^2 = 155$,
 $p \approx 12$, 12 m

Copyright © McGraw-Hill Ryerson, 2008