Deflect \times

What patterns do you see in the rows of the table? Compare your patterns with those of another pair of classmates. Use these patterns to record a rule for:

- writing the power of a power as a single power
* writing the power of a product as a product of two powers How can you check your rules?

Connect

We can use the exponent laws from Lesson 2.4 to simplify powers written in other forms.

Power of a power
We can raise a power to a power.
For example, 3^{2} raised to the power 4 is written as $\left(3^{2}\right)^{4}$.
$\left(3^{2}\right)^{4}$ is a power of a power.
(3) means $3^{2} \times 3^{2} \times 3^{2} \times 3^{2}$.

So, $3^{2} \times 3^{2} \times 3^{2} \times 3^{2}=3^{2}+2+2+2$ Using the exponent law for the product of powers

$$
=3^{8}
$$

The exponent of 3^{8} is the product of the exponents in $\left(3^{2}\right)^{4}$.
That is, $\left(3^{2}\right)^{4}=3^{2} \times 4$

$$
=3^{d}
$$

We can use this result to write an exponent law for the power of a power.

- Exponent Law for a Power of a Power

To raise a power to a power, multiply the exponents.
$\left(a^{n}\right)^{n}=a^{m n}$
$m n$ means $m \times n$
a is any integer, except 0 .
m and n are any whole numbers.

Power of a product
The base of a power may be a product; for example, $(3 \times 4)^{3}$.
$(3 \times 4)^{5}$ is a power of a product.
$(3 \times 4)^{3}$ means $(3 \times 4) \times(3 \times 4) \times(3 \times 4) \times(3 \times 4) \times(3 \times 4)$
So, $(3 \times 4) \times(3 \times 4) \times(3 \times 4) \times(3 \times 4) \times(3 \times 4)$
$=3 \times 4 \times 3 \times 4 \times 3 \times 4 \times 3 \times 4 \times 3 \times 4 \quad$ Removing the brackets
$=(3 \times 3 \times 3 \times 3 \times 3) \times(4 \times 4 \times 4 \times 4 \times 4)$ Grouping equal factors
$=3^{5} \times 4^{5} \quad$ Writing repeated multiplications as powers

We can use this result to write an exponent law for the power of a product.

- Exponent Law for a Power of a Product
$(a b)^{m}=a^{m} b^{m}$
a and b are any integers, except 0 .
m is any whole number.

Power of a quotient

The base of a power may be a quotient for example, $\left(\frac{5}{6}\right)^{3}$.
$\left(\frac{5}{6}\right)^{3}$ is a power of a quotient.
$\left(\frac{5}{6}\right)^{3}$ means $\left(\frac{2}{6}\right) \times\left(\frac{5}{6}\right) \times\left(\frac{5}{6}\right)$
$\mathrm{So}_{3}\left(\frac{5}{6}\right) \times\left(\frac{5}{6}\right) \times\left(\frac{5}{6}\right)=\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6}$

$$
\begin{aligned}
& =\frac{5 \times 5 \times 5}{6 \times 6 \times 6} \text { Multiplying the fractions } \\
& =\frac{5^{3}}{6^{3}} \text { Writing repeated multiplications as powers }
\end{aligned}
$$

We can use this result to write an exponent law for the power of a quotient.

- Exponent Law for a Power of a Quotient
$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \quad b \neq 0$
a and b are any integers, except 0 .
n is any whole number.

We can use these exponent laws to simplify or evaluate an expression.

3

Write as a power.
a) $\left[(-7)^{3}\right]^{2}$
b) $-\left(2^{4}\right)^{5}$
c) $\left(6^{2}\right)^{7}$

A Solution

Use the exponent law for a power of a power.
a) $\left[(-7)^{3}\right]^{2}=(-7)^{3 \times 2}$
b) $-\left(2^{4}\right)^{5}=-\left(2^{4} \times 5\right)$
c) $\left(6^{2}\right)^{7}=6^{2 \times 7}$
$=(-7)^{6}$
$=-2^{0}$
$=64$

Sheure Evaluating Powers of Products and Quotients

Evaluate.
a) $(-7) \times 5]^{2}$
b) $[24 \div(-6)]^{4}$
c) $-(3 \times 2)^{2}$
d) $\left(\frac{78}{13}\right)^{3}$

Solutions

Method 1

a) Use the exponent law for a power of a product.

$$
\begin{aligned}
(-7) \times 5]^{2} & =(-7)^{2} \times 5^{2} \\
& =49 \times 25 \\
& =1225
\end{aligned}
$$

b) Use the exponent law for a power of a quotient. Write the quotient in fraction form.

$$
\begin{aligned}
{[24 \div(-6))^{4} } & =\left(\frac{24}{-6}\right)^{8} \\
& =\frac{24^{4}}{(-6)^{3}} \\
& =\frac{33176}{1296} \\
& =256
\end{aligned}
$$

c) Use the exponent law for
a power of a product

$$
\begin{aligned}
-(3 \times 2)^{2} & =-\left(3^{2} \times 2^{2}\right) \\
& =-(9 \times 4) \\
& =-36
\end{aligned}
$$

d) Use the exponent law for a power of a quotient.

$$
\begin{aligned}
\left(\frac{8}{13}\right)^{3} & =\frac{78^{3}}{13} \\
& =\frac{37452}{3197} \\
& =216
\end{aligned}
$$

Method 2

Use the order of operations.
a) $[(-7) \times 5]^{2}=(-35)^{2}$

$$
=1225
$$

b) $[24 \div(-6))^{4}=(-4)^{4}$

$$
=256
$$

c) $-(3 \times 2)^{2}=-(6)^{2}$
$=-6^{2}$
$=-36$
d) $\left(\frac{78}{13}\right)^{3}=6^{3}$

$$
=216
$$

Dtelu Applying Exponent Laws and Order of Operations

Simplify, then evaluate each expression.
a) $\left(3^{2} \times 3^{3}\right)^{3}-\left(4^{3} \times 4^{2}\right)^{2}$
b) $(6 \times 7)^{2}+\left(3^{8} \div 3^{6}\right)^{3}$
c) $\left[(-5)^{3}+(-5)^{40}\right.$

A Solution

Use the exponent laws to simplify first, where appropriate.
a) In each set of brackets, the bases are the same, so use the exponent law for products.

$$
\begin{aligned}
& \left(3^{2} \times 3^{3}\right)^{3}-\left(4^{3} \times 4^{2}\right)^{2} \\
& =\left(3^{2} 3\right)^{3}-\left(4^{3+2}\right)^{2} \\
& =\left(3^{3}\right)^{3}-\left(4^{3}\right)^{2} \\
& =3^{5 \times 3}-4^{3 \times 2} \\
& =3^{15}-4^{10} \\
& =14348907-1048576 \\
& =13300331
\end{aligned}
$$

$$
=\left(3^{2+3}\right)^{3}-\left(4^{3+3}\right)^{2} \quad \text { Add the exponents in each set of brackets. }
$$

$$
=\left(3^{3}\right)^{3}-\left(4^{3}\right)^{2} \quad \text { Use the power of a power law. }
$$

$$
=3^{5 \times 3}-4^{5 \times 2} \quad \text { Multiply the exponents. }
$$

$$
=3^{15}-4^{30} \quad \text { Use a calculator }
$$

b) Multiply in the first set of brackets. Use the exponent law for the quotient of powers in the second set of brackets.
$(6 \times 7)^{2}+\left(3^{8} \div 3^{6}\right)^{3}$
$=(42)^{2}+\left(3^{8-6}\right)^{3}$
$=42^{2}+\left(3^{2}\right)^{3} \quad$ Use the power of a power law.
$=42^{2}+3^{6} \quad$ Use a calculator.
$=1764+729$
$=2493$
c) The expression is a power with exponent 0 , so its value is L.

$$
\left[(-5)^{3}+(-5)^{4}\right]^{0}=1
$$

Discuss

1. Why do you add the exponents to simplify $3^{2} \times 3^{4}$, but multiply the exponents to simplify the expression $\left(3^{2}\right)^{4}$?
2. a) What is the difference between a quotient of powers and a power of a quotient?
b) What is the difference between a product of powers and a power of a product?
3. In Example 3, is it easier to key the original expressions in a calculator or use the exponent laws to simplify first? Iustify your answer.
