Exposent Loud I

What patterns do you see in the rows of the table? Compare your patterns with those of another pair of classmates. Use these patterns to record a rule for:

- · writing the power of a power as a single power
- writing the power of a product as a product of two powers How can you check your rules?

and a second state of the second state of the second second second second second second second second second s

Connect

We can use the exponent laws from Lesson 2.4 to simplify powers written in other forms.

 \neq > Power of a power

We can raise a power to a power.

For example, 3^2 raised to the power 4 is written as $(3^2)^4$.

 $(3^2)^4$ is a power of a power.

 $(3^2)^4$ means $3^2 \times 3^2 \times 3^2 \times 3^2$.

So, $3^2 \times 3^2 \times 3^2 \times 3^2 = 3^{2+2+2+2}$ Using the exponent law for the product of powers $= 3^{8}$

The exponent of 3^8 is the product of the exponents in $(3^2)^4$. That is, $(3^2)^4 = 3^2 \times 4$

 $= 3^{8}$

We can use this result to write an exponent law for the power of a power.

Exponent Law for a Power of a Power To raise a power to a power, multiply the exponents. $(a^m)^n = a^{mn}$ *a* is any integer, except 0. *m* and *n* are any whole numbers.

mn means m × n

> Power of a product

The base of a power may be a product; for example, $(3 \times 4)^5$. $(3 \times 4)^5$ is a power of a product. $(3 \times 4)^5$ means $(3 \times 4) \times (3 \times 4) \times (3 \times 4) \times (3 \times 4) \times (3 \times 4)$ So, $(3 \times 4) \times (3 \times 4) \times (3 \times 4) \times (3 \times 4) \times (3 \times 4)$ $= 3 \times 4 \times 3 \times 4 \times 3 \times 4 \times 3 \times 4 \times 3 \times 4$ Removing the brackets $= (3 \times 3 \times 3 \times 3 \times 3) \times (4 \times 4 \times 4 \times 4 \times 4)$ Grouping equal factors $= 3^5 \times 4^5$ Writing repeated multiplications as powers

We can use this result to write an exponent law for the power of a product.

Exponent Law for a Power of a Product

 (ab)^m = a^mb^m
 a and b are any integers, except 0.
 m is any whole number.

> Power of a quotient

The base of a power may be a quotient; for example, $\left(\frac{5}{6}\right)^3$.

$$\left(\frac{5}{6}\right)^{3} \text{ is a power of a quotient.}$$

$$\left(\frac{5}{6}\right)^{3} \text{ means} \left(\frac{5}{6}\right) \times \left(\frac{5}{6}\right) \times \left(\frac{5}{6}\right)$$
So, $\left(\frac{5}{6}\right) \times \left(\frac{5}{6}\right) \times \left(\frac{5}{6}\right) = \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6}$

$$= \frac{5 \times 5 \times 5}{6 \times 6 \times 6} \quad \text{Multiplying the fractions}$$

$$= \frac{5^{3}}{6^{3}} \quad \text{Writing repeated multiplications as powers}$$

We can use this result to write an exponent law for the power of a quotient.

Exponent Law for a Power of a Quotient

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \qquad b \neq 0$$

a and b are any integers, except 0. n is any whole number.

We can use these exponent laws to simplify or evaluate an expression.

Example 1
 Simplifying a Power of a Power

 Write as a power.
 a)
$$[(-7)^3]^2$$
 b) $-(2^4)^5$
 c) $(6^2)^7$

 A Solution

 Use the exponent law for a power of a power.
 a) $[(-7)^3]^2 = (-7)^3 \times 2$
 b) $-(2^4)^5 = -(2^4 \times 5)$
 c) $(6^2)^7 = 6^2 \times 7$
 $= (-7)^6$
 $= -2^{20}$
 $= 6^{14}$

c) $-(3 \times 2)^2$ d) $\left(\frac{78}{13}\right)^3$
Method 2
Use the order of operations. a) $[(-7) \times 5]^2 = (-35)^2$ = 1225
b) $[24 \div (-6)]^4 = (-4)^4$ = 256
c) $-(3 \times 2)^2 = -(6)^2$ = -6^2 = -36
d) $\left(\frac{78}{13}\right)^3 = 6^3$ = 216

- 1. Why do you add the exponents to simplify $3^2 \times 3^4$, but multiply the exponents to simplify the expression $(3^2)^4$?
- **2.** a) What is the difference between a quotient of powers and a power of a quotient?
 - b) What is the difference between a product of powers and a power of a product?
- **3.** In *Example 3*, is it easier to key the original expressions in a calculator or use the exponent laws to simplify first? Justify your answer.