Chapter 9 Linear Inequalities

Section 9.1 Representing Inequalities

Term: An inequality is a mathematical statement comparing expressions that may not be equal.

Symbols:
$<=$ less than $\quad \leq=$ less than or equal to
$>=$ greater than $\quad z=$ greater than or equal to
$\neq=$ not equal to
Common ways to express:

1) verbally or word sentence
2) graphically (diagram or number line)
3) algebraically (with math symbols)

Boundary Point: separates the values that are less than from the values greater than a specified point. It may or may not be a possible value in the solution.
a) an open circle shows that the boundary point is not included in the solution.
b) a closed circle shows that the boundary point is included in the solution.

Eg \#1: Illustrate in 3 ways the following: "In Alberta schools, a student must go to school until they are at least 16."
\#1) Verbal/Word Sentence: Student must be 16 or older
\#2) Graph (number line):

\#3) Algebraically: $x \geq 16$
An inequality can be combined; it has 2 limits, an upper and a lower limit.
Eg: the age of Jr. High students average from 12 to 16 . You can use two inequalities, or a combined one.
$x \geq 12$ and $x \leq 16$
or to combine:
lower limit + upper limit
$12 \leq x \geq 16$ ($f(x)$
$12 \leq 4 \leq 16$

Section 9.2 Solve Single-Step Inequalities

A solution of an inequality is a value, or set of values, that makes an inequality true. Inequalities are solved using algebra, much like equations with one important exception.

Eg \#1
$\underline{3 x} \leq 15$
$-3 \quad 3$
$\mathrm{x} \leq 5$

Eg \#2
$\frac{15}{-3}<\frac{-3 x}{-3}$
$\frac{-5<x}{x<-5}$, note that \times is mo hathor ch
${ }^{* *}$ when you mult/divide by a negative number you must switch the inequality sign ${ }^{* *}$ Rewrite with the x on the left ${ }^{* *}$

Verify (like a check): Try -6 in this case
$15<-3 x$
$45-3(-6)=$
$15<-3(-6) \quad-\cdots$
$15-1^{* *}$ true, we have the correct solution.

$$
\begin{aligned}
x= & -6 \text { is per of solution set - } \\
& \text { m }(x \leq 5) \text {, prong our solution } \\
& \text { is correct. }
\end{aligned}
$$

(Don't change the sign during a verify, even though you may have mult/divided by a negative.)

Eg \#3

Jaxon buys baseball cards for $\$ 5.95$. He has decided to spend a most, $\$ 39.00$. How many cards can he buy and not overspend?
$\frac{5.95 x}{5.95} \leq \underline{39}$

$$
x \leq 6.5
$$

\therefore He can buy at most, 6 baseball cards.

Section 9.3 Solve Multiple Step Inequalities

Solve and graph:

$$
\begin{array}{cc}
\underline{x}+3>8 \\
4 \quad-3 & -3 \\
\underline{x}> & >5^{\times 4} \\
\times 44 & \\
x & >20
\end{array}
$$

$$
\begin{aligned}
&+3 x \\
&-10 \leq 8 x+38 \\
&-38
\end{aligned}
$$

$$
-48 \leq 8 x
$$

$$
8 \quad 8
$$

$$
-6 \leq x * * \text { rewrite with the }
$$

$$
x \geq-6 \quad x \text { on the left** }
$$

Eg: You have two jobs you can take. Store A pays $\$ 55 /$ day plus 3% of your sales. Store B pays $\$ 40 /$ day plus 5% of your sales. What would your sales need to be to make more at Store B?

Let x represent commission
Store B > Store A
$\underset{-.03 x}{40}+\underset{-.03 x}{ }+5 x^{-.03 x}$
$40+.02 x>55$
$-40 \quad-40$
$\frac{.02 x}{.02}>\frac{15}{.02}$

$$
x>750
$$

\therefore He would need to sell more than $\$ 750$ to make more at Store B.

