An aircraft is at an altitude of 11 km. Earth has an average radius of about 6378 km. How far from the plane is the horizon, to the nearest kilometre?

Nola's Solution

The horizon is about 375 km from the plane.

444 Chapter 9 Circle Geometry

NEL

and a substantiant statements of

Communication **Tip**

To describe the distance between the centre of a circle and a chord, use the measured distance from the centre of the circle to the midpoint of the chord.

In Summary

Key Idea

• Since a line from the centre of a circle to the midpoint of a chord is the perpendicular bisector of the chord, the Pythagorean theorem can be used to calculate how far the chord is from the centre of the circle.

Need to Know

- Chords equidistant from the centre of a circle are of equal length.
- Chords of equal length are equidistant from the centre of a circle.

Checking

1. Calculate the missing lengths to the nearest centimetre.

2. A sand timer can be set into a circle as shown. The heights of the top and bottom sections are equal. Are the widths of the top and bottom the same? Explain how you know.

Practising

a)

3. Calculate the missing lengths to the nearest unit.

OW = 7 m, ST = ?

438 Chapter 9 Circle Geometry

NEL

Zachary's Solution: Trying with parallel chords

locate the centre of a circle directly using only their perpendicular bisectors. Since both perpendicular bisectors are the same line, I could not determine the location of the centre. I know the centre is on line segment *XY*, but I don't know where.

In Summary

Key Idea

• A line that passes through the centre of a circle and the midpoint of a chord is perpendicular to the chord. Another way of saying this is that a line that is perpendicular to a chord and also passes through the centre of the circle bisects the chord.

Need to Know

- The perpendicular bisector of a chord passes through the centre of a circle.
- The centre of a circle is located at the intersection of the perpendicular bisectors of two non-parallel chords.

iy is of M P N OP is the perpendicular bisector of chord MN.

In Summary

Key Ideas

• An inscribed angle is equal to half the measure of the central angle subtended by the same arc.

$$\angle I = \frac{1}{2} \angle C \text{ or } \angle C = 2 \angle I$$

inscribed

angle

angle

• An inscribed angle subtended by a semicircle measures 90°.

Checking

1. Determine the measure of each central angle subtended by minor arc *AB*. The radii divide each circle into equal parts.

2. For each circle with centre C, determine the measure of the red angle. ν

A magician is designing a logo for his business. His logo is drawn in a circle centred at C. What are the measures of $\angle QPR$, $\angle PQS$, $\angle PRS$, and $\angle QSR$ in the logo?

Zachary's Solution

In the logo, $\angle QPR = \angle QSR = 20^{\circ}$ and $\angle PQS = \angle PRS = 90^{\circ}$.

In Summary

Key Idea

• It is possible to have many inscribed angles subtended by the same arc. Angles 1, 2, and 3 have the same measure. If the arc is a semicircle, the inscribed angles are 90°.

NEL

A strategies of the stational strategies of the

S

40°