An aircraft is at an altitude of 11 km . Earth has an average radius of about 6378 km . How far from the plane is the horizon, to the nearest kilometre?

Nola's Solution

The horizon is about 375 km from the plane.

In Summary

Key Idea

- A tangent to a circle is perpendicular to the radius drawn to the point of tangency.

Need to Know

- Tangent segments drawn from an externäl point to a circle are equal.
- Tangent properties and the Pythagorean theorem can be used to solve circle problems.

In Summary

Key Idea

- Since a line from the centre of a circle to the midpoint of a chord is the perpendicular bisector of the chord, the Pythagorean theorem can be used to calculate how far the chord is from the centre of the circle.
 the centre of the circle to the midpoint of the chord.

Checking

1. Calculate the missing lengths to the nearest centimetre.
a)

b)

$y=?$

$A B=$?
2. A sand timer can be set into a circle as shown. The heights of the top and bottom sections are equal. Are the widths of the top and bottom the same? Explain how you know.

Practising

3. Calculate the missing lengths to the nearest unit.
a)

$$
P Q=?
$$

b)

$O W=7 \mathrm{~m}, S T=?$

Zachary's Solution: Trying with parallel chords

In Summary

Key Idea

- A line that passes through the centre of a circle and the midpoint of a chord is perpendicular to the chord. Another way of saying this is that a line that is perpendicular to a chord and also passes through the centre of
 the circle bisects the chord.

Need to Know

- The perpendicular bisector of a chord passes through the centre of a circle.
- The centre of a circle is located at the intersection of the perpendicular bisectors of two non-parallel chords.

In Summary

Key Ideas

- An inscribed angle is equal to half the measure of the central angle subtended by the same arc.

$$
\angle I=\frac{1}{2} \angle C \text { or } \angle C=2 \angle I
$$

Need to Know

- An inscribed angle subtended by a semicircle measures 90°.

Since $Y Z$ is a diameter, arc $Y Z$ is a semicircle.
$\angle Y C Z$ is a central angle equal measuring 180°.
$\angle X$ is subtended by $\operatorname{arc} Y Z$, so $\angle X=90^{\circ}$.

Checking

1. Determine the measure of each central angle subtended by minor $\operatorname{arc} A B$. The radii divide each circle into equal parts.
a)

b)

c)

2. For each circle with centre C, determine the measure of the
red angle.
a)

$\angle P=?$

$\angle C=$?
c)

$\angle K=$?

EXAMPLE 2 Determining missing angles

A magician is designing a logo for his business. His logo is drawn in a circle centred at C. What are the measures of $\angle Q P R, \angle P Q S, \angle P R S$, and $\angle Q S R$ in the logo?

Zachary's Solution

In Summary

Key Idea

- It is possible to have many inscribed angles subtended by the same arc. Angles 1,2 , and 3 have the same measure. If the arc is a semicircle, the inscribed angles are 90°

$\angle 1=\angle 2=\angle 3$

$\angle 4=\angle 5=\angle 6=90^{\circ}$

