- Central Angle and Inscribed Angle Property

In a circle, the measure of a central angle subtended by an arc is twice the measure of an inscribed angle subtended by the same arc.
$\angle \mathrm{POQ}=2 \angle \mathrm{PRQ}$, or
$\angle \mathrm{PRQ}=\frac{1}{2} \angle \mathrm{POQ}$

The above property is true for any inscribed angle.

- Inscribed Angles Property

In a circle, all inscribed angles subtended
by the same arc are congruent.

$$
\angle \mathrm{PTQ}=\angle \mathrm{PSQ}=\angle \mathrm{PRQ}
$$

The two arcs formed by the endpoints of a
部 diameter are semicircles.
The central angle of each arc is a straight angle, which is 180°.
The inscribed angle subtended by a semicircle is one-half of 180°, or 90°.

- Angles in a Semicircle Property

All inscribed angles subtended by a semicircle are right angles.
Since $\angle \mathrm{AOB}=180^{\circ}$,
then $\angle \mathrm{AFB}=\angle \mathrm{AGB}=\angle \mathrm{AHB}=90^{\circ}$

We say: The angle inscribed in a semicircle is a right angle.
We also know that if an inscribed angle is 90°, then it is subtended by a semicircle.

Study Guide

- A tangent to a circle is perpendicular to the radius at the point of tangency.
That is, $\angle \mathrm{APO}=\angle \mathrm{BPO}=90^{\circ}$

- The perpendicular from the centre of a circle to a chord bisects the chord.
When $\angle \mathrm{OBC}=\angle \mathrm{OBA}=90^{\circ}$, then $\mathrm{AB}=\mathrm{BC}$
- A line segment that joins the centre of a circle to the midpoint of a chord is perpendicular to the chord. When O is the centre of a circle and $A B=B C$,
 then $\angle \mathrm{OBC}=\angle \mathrm{OBA}=90^{\circ}$
- The perpendicular bisector of a chord in a circle passes through the centre of the circle. When $\angle \mathrm{OBC}=\angle \mathrm{OBA}=90^{\circ}$, and $\mathrm{AB}=\mathrm{BC}$, then the centre O of the circle lies on DB .

- The measure of a central angle subtended by an arc is twice the measure of an inscribed angle subtended by the same arc.
$\angle A O C=2 \angle A B C$, or
$\angle \mathrm{ABC}=\frac{1}{2} \angle \mathrm{AOC}$
- All inscribed angles subtended by same arc are congruent.
$\angle A C B=\angle A D B=\angle A E B$

