\qquad

7.1 The Pythagorean Theorem

1. MATHPOWER ${ }^{\text {TM }}$ Eight, pp. 206-207

The Pythagorean Theorem states that in any right triangle, if c is the length of the hypotenuse, and a and b are the lengths of the legs, then

$$
a^{2}+b^{2}=c^{2}
$$

State the relationship in the form $a^{2}+b^{2}=c^{2}$ for the sides in each triangle.

Find the length of the unknown side in each right riangle.

6.

7.

8.

Calculate the length of the unknown side, to the nearest tenth.
9.

$x=$ \qquad
11.

$p=$ \qquad
13.

$r=$ \qquad
15.

$s=$ \qquad
$x=$ \qquad
10.

$y=$ \qquad
12.

$q=$ \qquad
14.

16.

$t=$ \qquad
\qquad

7.2 Using the Pythagorean Theorem MATHPOWER ${ }^{\text {TM }}$ Eight, pp. 208-209

1. A $12-\mathrm{m}$ ladder is leaning against a wall. The foot of the ladder is 3 m from the base of the building. How far up the wall is the top of the ladder?
2. Wires are used to support a flagpole at the fairground.

The wires are attached 3 m from the ground and 2.5 m from the base of the pole. How long is each wire?
3. Jacob sectioned off a triangular area in his yard for a vegetable garden.

How much fence does he need, in metres, to surround the three sides of the garden?
4. Find x to the nearest tenth of a centimetre.
a)

$$
x=
$$

\qquad

5. A decorative window has 4 diagonal bars as shown. What is the length of each one?

A power cable runs east from the station, S, to point A, and south to point B. What is the length of the cable that runs between A and B, to the nearest tenth of a metre?
7. The pegs on a 3-by-3 geoboard are spaced 5 cm apart. Sketch all the different right triangles that can be made on it, and calculate the length of each side, to the nearest tenth o^{\prime} a centimetre.

