- The First Law of Reflection: The incident beam (ray), the normal and the reflected beam are all on the same plane (all occur on the same flat surface).
- The Second Law of Reflection: The angle of incidence is equal to the angle of reflection.

Vocabulary
NOBHOL ON imagindy
Line of reference drawn perpendicular t 90°. to the reflecting/ refracting surfer of the point where incident/ refracted ray strikes the surface.

An incident ray is a

ray of light that travels toward a reflecting surface.
?

The angle of incidence

 is the angle between the incident ray and the normal.The normal is the line drawn from the point of incidence at 90° to the surface of the optical device.

A reflected ray is a ray of light that bounces off a reflecting surface.

The angle of reflection is the angle between the reflected ray and the normal.

The point of incidence is the spot where the incident ray strikes the reflecting surface.

Figure 7.15 The two laws of reflection: 1 . The angle of reflection, r, is always equal to the angle of incidence, i. 2 . The incident ray, the normal, and the reflected ray are always in the same plane.

LESSON What is reflection? 11

How does a ball bounce back to you after you throw it against a wall? It depends upon how you throw it. If you throw the ball straight on, it will bounce back straight on. If you throw it at an angle, it will bounce back at an angle.

Light, you know, can bounce. "Bounced" light is reflected light. We can predict how reflected light will behave. Just follow the explanation.

A single beam of light is called a light ray. Light is made up of many, many light rays. But let us look at one light ray.

This is a single light ray. It is hitting a flat mirror at an angle. Then it is bouncing off. It is reflecting.

The ray that hits the mirror is called the incident [IN si dent] ray.
The ray that bounces off the mirror is called the reflected ray.

Now let's draw a line that makes a right angle (90 degrees) where the incident ray hits the mirror. This line is called the normal.

- The angle between the incident ray and the normal is called the angle of incidence.
- The angle between the reflected ray and the normal is called the angle of reflection.

The Law of Reflection states that "the angle of incidence is equal to the angle of reflection."

In the example on this page, the angle of incidence is 30 degrees. The angle of reflection, then, is also 30 degrees.

REFLECTING RAYS

Two reflecting rays are shown in Figures A and B. Identify the parts shown by number. Choose from the following:

```
incident ray
reflected ray
```

normal
angle of incidence angle of reflection

Write your answers next to the correct numbers.

Figure A

1. orate of niflution
2.

3.

Figure B
6. one at viestand
7. incident loge
8.

4.

9.
10. \qquad
5. \qquad
mudeno $b=\frac{10}{10}$ the $o-k$ of
11. State the Law of Reflection. \qquad aperture s all in the pe pone.
12. Which of the angles above are equal? (Use numbers.)
a) In Figure $A, 1$ and 3 are equal.
b) In Figure $B, \quad b$ and \quad are equal.

Something Extra

If you have a protractor, measure the angles in Figures A and B. What degrees do the angles measure? Figure A. \qquad
Figure B

ere are two kinds of reflections: regular and diffuse [di FYOOS]. What are the differences? Find out for yourself. It's easy! Figures C and D show the two kinds of reflection. They also show light rays all coming from a single source.

Study each figure. Then answer the questions that go with each.

1. Figure C shows
 reflection.
2. A surface that gives a regular reflection is

Figure C Regular reflection
3. Every ray has its own normal. In regular reflection, the normals
 face in the same direction.

In a regular reflection
a) every angle of incidence \qquad the same.
b) every angle of reflection \qquad the same.

5. Figure D shows a
$\xrightarrow[\text { regulat, diffuse }]{\longrightarrow}$ reflection.
6. A surface that gives a diffuse
reflection is

Figure D Diffuse reflection

7. In a diffuse reflection, the normals \qquad face in the same direction.
8. In a diffuse reflection. . .
a) every angle of incidence \qquad the same. (Careful, remember where the angle of incidence is!)
b) every angle of reflection \qquad the same.

What do you think?

9. Which kind of reflection do you think a mirror gives, regular or diffuse?
\qquad
10. Hold your book up and look at this page.
a) Does the page reflect like a mirror? \qquad
b) This shows that paper gives a \qquad reflection. regular, diffuse
\qquad
rough, smooth
11. Run your hand over this page. To your sense of touch, paper is _.
12. To light, the surface of the paper is \qquad .

FILL IN THE BLANK

Complete each statement using a term or terms from the list below. Write your answers in the spaces provided. Some words may be used more than once.

$$
\begin{array}{cll}
\text {-incident- } & \text {-diffuse- } & \text {-angle of incidence- } \\
\text { - equal- } & \text { - angle of reflection- } & \text {-ray- } \\
\text { - normal- } & \text { - reflected- } & \text {-regular }
\end{array}
$$

1. A single line of light energy is called a \qquad .
2. A ray that strikes a surface is called an modent ray.
3. A "bounced" ray is called a Nefected ray.
4. A line that makes a 90° angle to a surface is called a \qquad .
5. The angle between an incident ray and its normal is called the Rage of mayence
6. The angle between a reflected ray and its normal is called the once of mifitury
7. An angle of incidence is equal to its angle of reflection.
8. There are two kinds of reflections. They are Toulon and diffuce.
9. A perfectly even surface gives a Nat ran reflection.
10. An uneven surface gives a deferent reflection.

- Ceotoroue Towado N
- More toless Ruay

中 foum Normal

\qquad

\qquad

