5.1
 Exploring Nets

GOAL

Build 3-D objects from nets.

1. Match each object to its net.
a)

d)

b)

c)

e) \qquad

A net is a 2-D pattern that you can fold to create a 3-D object.
For example, this is a net for a cube.

f)

i)

iii)

ii)

iv)

v)

At-Home Help

5
 .2

 Drawing the Nets of Prisms

 Drawing the Nets of Prisms and Cylinders

 and Cylinders}
GOAL

Draw nets of prisms and cylinders.

1. a) I am a rectangle with a circle attached at each end.

What net am I?
b) I am three rectangles attached at the longer sides.

At-Home Help

When you draw a net, make sure that each edge will meet another edge and that no sides overlap.
2. Draw a net for this rectangular prism.

3. Draw a net for this triangular prism.

4. Draw a net for this cylinder.

5 3
 Determining the Surface Area of Prisms

COAL

Develop strategies to calculate the surface area of prisms.

1. Calculate the surface area of each prism.
a)

b)

c)

d)

5.4 Determining the Surface Area of Cylinders

COAL

Develop strategies to calculate the surface area of a cylinder.

1. Calculate the surface area of each cylinder.
a) 5.0 cm
10.0 cm

b) 2.0 cm

2. Determine the surface area of a cylinder with each radius and height:
a) radius 4.0 cm , height 12.0 cm
b) radius 4.0 cm , height 10.5 cm
c) radius 4.0 cm , height 14.5 cm

At-Home Help

To determine the surface area of a cylinder:

- Calculate the area of the curved side.
- Calculate the area of the top and the base.
- Add the areas.

Area of top and base:
$A=2 \times \pi \times r \times r$
Area of curved surface:
$A=C \times h$ or $A=\pi \times d \times h$

$$
\begin{aligned}
S A= & 2 \times \pi \times 2.0 \mathrm{~cm} \times 2.0 \mathrm{~cm} \\
& +\pi \times 4.0 \mathrm{~cm} \times 5.0 \mathrm{~cm} \\
= & 25.1 \mathrm{~cm}^{2}+62.8 \mathrm{~cm}^{2} \\
= & 87.9 \mathrm{~cm}^{2}
\end{aligned}
$$

3. A company will construct metal oil drums for local refineries. Each drum is 1.0 m in diameter and 1.5 m high. Determine the area of the metal needed to construct an oil drum.

Determining the Volume of

 Prisms
COAL

Develop and apply formulas for the volume of prisms.

1. Calculate the volume of each prism.
a)

b)

2. A rectangular prism is 4.0 cm in length, 8.0 cm in height, and $64.0 \mathrm{~cm}^{3}$ in volume. Calculate the width of the prism.
3. A triangular prism is 4.0 cm in length. Its base is 6.0 cm wide and the volume is $2000.0 \mathrm{~cm}^{3}$. Calculate the height of the prism's base.

At-Home Melp

To determine the volume of a prism, multiply the area of the base by the height of the prism:
$V=b \times h$
The b in this formula refers to the base of the prism.
Area of a rectangle: $A=I \times w$
Area of a triangle: $A=\frac{1}{2} b \times h$
The b in this formula refers to the base of the triangle.

$$
\begin{aligned}
V & =8 \mathrm{~cm} \times 3 \mathrm{~cm} \times 4 \mathrm{~cm} \\
& =96 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
V= & \left(\frac{1}{2} \times 6.0 \mathrm{~cm} \times 4.0 \mathrm{~cm}\right) \\
& \times 12.0 \mathrm{~cm} \\
= & 144 \mathrm{~cm}^{3}
\end{aligned}
$$

56 Determining the Volume of Cylinders

GOAL

Develop a formula for the volume of a cylinder.

1. Calculate the volume of each cylinder.

b)

2. Which cylinder would hold more water?

Explain your answer.
Cylinder A: height 7.0 cm , diameter 5.0 cm
Cylinder B: height 5.0 cm , diameter 7.0 cm

At-Home Help

To calculate the volume of a cylinder, multiply the area of the base by the height of the cylinder:
$V=\pi \times r \times r \times h$

$V=\pi \times 2.0 \mathrm{~cm} \times 2.0 \mathrm{~cm} \times 5.0 \mathrm{~cm}$
$\doteq 62.8 \mathrm{~cm}^{3}$
Volume is the amount of space that an object occupies. Capacity is the amount that an object can hold.
3. A tennis ball is about 6.0 cm in diameter. Determine the capacity of a cylindrical canister that could just fit 3 tennis balls as shown.

Solve Problems Using Models

GOAL

Use models to solve measurement problems.

1. Determine the surface area of the shaded region.

6.0 m
2. A pizza box measuring 25 cm by 25 cm by 4 cm contains a pizza 20 cm in diameter and 3 cm high. What percent of the box is occupied by the pizza and what percent is not?
3. A tortilla chip container is in the shape of a triangular prism with a base area of $36 \mathrm{~cm}^{2}$ and a volume of $540 \mathrm{~cm}^{3}$. The base is a right isosceles triangle. The containers are shipped in a box with a capacity of $38880 \mathrm{~cm}^{3}$.
a) How many containers fit in one box? Explain.
b) Model two different boxes that would hold the packages. Explain which box you would use.

At-Home Help

When solving problems using models, the following steps will help you:

1. Understand the Problem

Search the question for information necessary to solve the problem.
2. Make a Plan

Translate the information into a working diagram so you can determine how to solve the problem.
3. Carry Out the Plan

Answer the problem using the information in the question and the formulas needed to solve for the measurements.
4. Look Back

Review your work to determine if your calculations are correct and whether the answer makes sense. Explain which box you would use.

Chapter
 Test Yourself

Circle the letter of the correct answer.

1. This is a net of which 3-D object?
A. a triangular prism
B. a cylinder
C. a cube
D. a square pyramid

2. Which diagram is the net of a cylinder?
A.

B.

C.

D.

3. What is the surface area of a rectangular prism 6 cm by 8 cm by 7 cm ?
A. $266 \mathrm{~m}^{2}$
B. $336 \mathrm{~cm}^{2}$
C. $292 \mathrm{~cm}^{2}$
D. $252 \mathrm{~cm}^{2}$
4. A triangular prism has a base in the shape of an equilateral triangle. The base is 5.0 m wide and 4.3 m high. The prism is 4.0 m in length. What is the surface area of the triangular prism?
A. $71.5 \mathrm{~m}^{2}$
B. $81.5 \mathrm{~m}^{2}$
C. $86.5 \mathrm{~m}^{2}$
D. $96.5 \mathrm{~m}^{2}$
5. What is the surface area of a cylinder 10.0 cm in height and with a radius of 8.0 cm ?
A. $706.3 \mathrm{~cm}^{2}$
B. $804.2 \mathrm{~cm}^{2}$
C. $904.8 \mathrm{~cm}^{2}$
D. $1005.3 \mathrm{~cm}^{2}$

Test Yourself

6. What is the volume of a rectangular prism 6 m by 2 m by 10 m ?
A. $60 \mathrm{~cm}^{3}$
B. $80 \mathrm{~cm}^{3}$
C. $40 \mathrm{~cm}^{3}$
D. $120 \mathrm{~cm}^{3}$
7. A triangular prism has a base 9.0 cm wide and 3.0 cm high. The prism is 5.0 cm in length. What is the volume of the triangular prism?
A. $67.5 \mathrm{~cm}^{3}$
B. $87.5 \mathrm{~cm}^{3}$
C. $97.5 \mathrm{~cm}^{3}$
D. $107.5 \mathrm{~cm}^{3}$
8. What is the volume of a cylinder 12.0 cm high and with a diameter of 6.0 cm ?
A. $282.7 \mathrm{~cm}^{3}$
B. $339.3 \mathrm{~cm}^{3}$
C. $238.2 \mathrm{~cm}^{3}$
D. $187.5 \mathrm{~cm}^{3}$
9. What is the height of a rectangular prism with a base area of $99 \mathrm{~m}^{2}$ and a volume of $396 \mathrm{~m}^{3}$?
A. 1 m
B. 2 m
C. 3 m
D. 4 m
10. What is the height of a triangular prism with a base area of $45 \mathrm{~cm}^{2}$ and a volume of $270 \mathrm{~cm}^{3}$?
A. 3 cm
B. 4 cm
C. 6 cm
D. 10 cm
11. What is the height of a cylinder with a base area of $201 \mathrm{~m}^{2}$ and a volume of $603 \mathrm{~m}^{3}$?
A. 3 m
B. 6 m
C. 8 m
D. 9 m
12. Which object has the greatest surface area?
A. a rectangular prism 6 cm by 3.5 cm by 2.0 cm
B. a triangular prism with base width 5 cm , base height 5 cm , and length 5 cm
C. a cylinder with height 5 cm and radius 2 cm
D. a rectangular prism 4 cm by 4 cm by 4 cm
13. Which prism has the greatest volume?
A. a rectangular prism 4.5 cm by 4.5 cm by 7.0 cm
B. a triangular prism with base width 9 cm , base height 5 cm , and length 7 cm
C. a rectangular prism 7 cm by 3 cm by 7 cm
D. a triangular prism with base width 7.5 cm , base height 4.5 cm , and length 9.5 cm

Triangular Prism

SEN Teacher

Pentagonal Prism

SEN Teacher

Icosahedron

Pyramid

Tetrahedron

