\qquad

8.2 Surface Areas of Polyhedra MATHPOWER ${ }^{\text {TM }}$ Eight, pp. 248-249

The surface area of a figure is the sum of the areas of all its faces.
surface area $=$ areas of $a+b+c+d+e+f$

Draw the net. Then, estimate and calculate the surface area of each polyhedron.
1.

2.

3.

4.

\qquad

8.3 Volumes of Prisms MATHPOWER ${ }^{\text {TM }}$ Eight, pp. 252-253

The volume of a prism is the area of the base multiplied by the height of the prism.

Area of base $4 \times 5=20$
Volume $\quad 20 \times 2=40$
The volume is $40 \mathrm{~cm}^{3}$.

Area of base $\quad \frac{1}{2} \times 4 \times 8=16$
Volume $\quad 16 \times 3=48$
The volume is $48 \mathrm{~cm}^{3}$.

Estimate, then calculate the volume of each prism.
1.
6.5 cm

2.

4.

\qquad

8.4 Surface Area and Volume of a Cylinder MATHPOWER ${ }^{\text {TM }}$ Eight, pp. 254-255

$$
\begin{aligned}
\text { Volume } & =\text { area of base } \times \text { height } \\
& =\pi r^{2} \times h
\end{aligned}
$$

Surface area $=$ areas of $\mathrm{a}+\mathrm{b}+\mathrm{c}$

$$
=\pi r^{2}+\pi r^{2}+(\pi d \times h)
$$

$$
\text { Use } \pi=3.14
$$

Calculate the surface area and the volume of each cylinder.
1.

\qquad
2.

\qquad
3.

\qquad
\qquad
4. A flour canister is 25 cm tall and has a diameter of 20 cm . It is filled to 3 cm from the top. What volume of flour does it contain?
5. A juice can is 16 cm tall and has a diameter of 9 cm . The ends of the can are tin and the body is cardboard.
a) What is the volume of the can?
b) What area of tin is used?
c) What area of cardboard is used?
d) What is the total surface area?
6.

a) Which shape has the greater surface area?
b) By how much is it greater?
c) Which shape has the greater volume?
d) By how much is it greater?

Name \qquad

8.5 Surface Area and Volume of Composite Solids MATHPOWER ${ }^{\text {TM }}$ Eight, pp. 262-263

Volume $=$ volume of large cylinder - volume of small cylinder
Surface area $=$ area of large cylinder's curved face + area of small cylinder's curved face

+ area of large cylinder's circular faces - area of small cylinder's circular faces

Volume $=$ volume of rectangular prism

+ volume of triangular prism
Surface area $=$ area of 5 faces of rectangular prism

$$
+ \text { area of } 4 \text { faces of triangular prism }
$$

Find the volume.

\qquad
\qquad
Find the surface area.

\qquad

Name \qquad

Test One CHAPTER 8: Surface Area and Volume MATHPOWER ${ }^{\text {TM }}$ Eight, pp. 243-267

Name each polyhedron and state its number of faces, edges, and vertices.
1.

2.

Draw a net for each polyhedron.
3. rectangular prism
4. triangular pyramid

Estimate, then calculate the surface area.
5.

6.

7.

Calculate the volume.
8.

9.

11. Calculate the surface area and the volume.

\qquad

Test Two CHAPTER 8: Surface Area and Volume MATHPOWER ${ }^{\text {TM }}$ Eight, pp. 243-267

Name each polyhedron and state its number of faces, edges, and vertices.
1.

2.

Name and sketch the polyhedron made from each net.
3.

4.

Estimate, then calculate the surface area.
5.

\qquad

Calculate the volume.

9.

10.

11. Calculate the surface area and the volume.

12. A container has the shape of a rectangular prism. Its inside dimensions are 10 cm by 8 cm by 14 cm . Find the volume of water, in cubic decimetres, the container holds.
\qquad

Extension CHAPTER 8: Surface Area and Volume MATHPOWER ${ }^{\text {TM }}$ Eight, pp. 243-267

Each of the shapes is worth the given value.

equilateral triangle \$1.50

rectangle
$\$ 2.75$

square
$\$ 3.00$

ular pentagon \$5.25

Calculate the cost of constructing each of the following solids.
1.

2.

3.

\qquad
\qquad

Use the dimensions of this swimming pool for questions 4 and 5.

4. Calculate the volume of the pool.
5. Calculate the surface area of the pool's liner.
6. The outside surfaces of a cube are painted blue. The cube is cut into 27 congruent cubes.
a) Calculate the surface
 area of the painted surfaces of the small cubes.
b) Calculate the surface area of the unpainted surfaces of the small cubes.
7. The side lengths of each cube in the diagram are 3 times longer than the cube to its right. The volume of the middle cube is $27 \mathrm{~cm}^{3}$. What is the volume of the other 2 cubes?

The dimensions of the rectangular prism are shown. Predict, then calculate the answer to each of the following.
a) What is the effect on the volume of the prism if the length is increased by 1 cm ?
b) What is the effect on the surface area of the prism if the length is increased by 1 cm ?
c) What is the effect on the volume of the prism if the width is increased by 1 cm ?
d) What is the effect on the surface area of the prism if the width is increased by 1 cm ?
e) What is the effect on the volume of the prism if the height is increased by 1 cm ?
f) What is the effect on the surface area of the prism if the height is increased by 1 cm ?

